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Thie paper deals with an nttemut to obtain a test for the stability of 
8otion with the simultaueoua use of several functions V. In this oonnec- 
tion esoh function V csn satisfy less rigid requirements than the one 
function oacarring in the COrreSpOndiug theorems of Lispunov’s second 
nethod [l, 21. This allows us to expect that the use of several functions 
V can lead to a Bore flexible mechanism. 

The work is based on Chaplygin’ s theory of differential ineuual ities 
rd. That is, we shall apply the following theorem on differential in- 
equalities of lazerskl [d . 

Let the following system of equations be given 

where the f, are definite and continuous in some open region B in a 
(i + l)-dfmeneional space; each function f, is non-decreasing with re- 
spect to ~1. . . . , y,_I, Y,+~, . . . , yk in region Q. Then, through every 
interior point (ylo. . _. , yko, t) of region Q there passes one upper 
integral y+( t, yo, te) and one lower integral y-(t, yO, to) of system 
(0.1) with respect to this point* and to the interval [tu, a). The number 
a can be chosen equal to 03 or such that as t - a the representative point 

spproscbes the boundary of Q along the upper (lower) integral. 

Let functions yl( t), . . . , yk( t) be given, continuously differentiable 

in the interval [to, a), such that y,( to) = ySO, (yll( t). . . . , 

VyI( t> * t) E Q when t E [to, a). 

l These integrals are characterized by the fact that for every integral 

r(t, Ye* tef passing through the point (ye, te), for t E [ te, a): 

Y*- (G Yo, to) d Y@ (4 210, $0) < Yrf 0, Yo, to) (s=i,...,k) 

1506 
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1. If 

4$ (t) 
df B f, w(t), ’ 4 . I $(t), t) when t E [to, a) (s=l,...,k) 

then 

4 ft) d Y,+ (t, yo, to) *hen t E fto, crf (8 = 1, . . * ) k) 

2. However, if 

W, (0 
-~fif,%W,..., dt 

-tJr (t), t) when t E [to, a) (8 = 1, . . . , k) 

then we shall have 

qs ft) > yg- (4 YO, to) when t E tto, 4 (8=:1,...,k) 

It may be possible to apply other known theorem on differential and 
integral inequalities LS]. Then condition 3 in the obtained tests of 
stability and instability would be replaced by some other refiuire8ent. 

The stability theorems obtained with the use of several functions V 

enable us to construct tests for stability and instability which utilize 
the properties of derivatives of the functions V of order higher than 
the first. We shall consider in detail such a family of tests with de- 
rivatives of the first and second OrdeF. 

1. Let there he given the system of equations of perturbed motion 

dZr 
- = x* (Sr, l l - , %lnr 0 dt (i=f, .._,n) (W 

The set of n real numbers (xl, . . . , x ) is considered as a point x in 
an n-dimensional space R” with the norm nxll.= lxll + . . . + I+ 

‘Ihe functions ‘i(X, t) are definite, continuous, and satisfy the 
Lipschitz conditions with respect to n in the region F 

Let 

X( (0, f) E 0 (i = i, t . * , n) 

that is, system (1.1) admits of the unperturbed motion z = 0. 

‘Ihe perturbed motion is characterized by the set of functions 

z 03 x0, to) = @I (4 $0, l * l t Go, to), *.., %a (tv zlos - * - 9 &Or to)) 

which are definite and continuous when (ra, t,) &r, t > to, and are 
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continuously differentiable with respect to t. 

Let us consider the real functinns V,(n, t), . . . , V,(x, t) which are 
definite and continuous in region r together with their derivatives 

it&r, t), .*., f,(t) with respect to time t, taken relative to the equa- 
tions of perturbed motion (1.11, and which vanish for the unperturbed 
motion, i.e. 
v= (V,, ..‘, 

VS(O, t) 3 0, Vs(O, t) f 0. For the set of these functions 

Va) we introduce the norm WI = Iv,1 + ... * W&I. 

The functions fI( V, t), . . . , fk(V, t) will be assumed to be real, de- 

finite and continuous in region G 

PVII<fL t>o (R1 > R = sup [IIV (2, 1) Ijwhen(z, 1) E I’] or RI = 4 

Let us agree to call the functions f,(V, t) non-decreasing with re- 
spect to functions V,, . . . . Vs_l, Vs+ls . . . . Vk in G if, for arbitrary 
points 

v,* 9. . . ,Vk*, t*) EZ G, (VI**, . . . , Vsml**, Vaf, Vg+I**, . . . , V,**t*) E G 

satisfying the inequalities 

there holds 

fs (VI**, . . . , vex**, va*, v,+,**, . . . , Vk**, t*) > fs {VI*, . . . , vk*, t*) 

For example, the function fs(Vs, t) not depending on V,, . . . Vs_, ,. 

V 
. ?~‘v,xl 

V, is non-decreasing with respect to V,, . . . . Vs_l, Vs+l, 
G. 

Theores 1.i. Let there exist functions Yl(x, t), . . . , V,(X, t), 
possessing the following properties in r. 

1. The functions V,(x, t) >O, . . . , Vlfx, t) >O (1 <I\< K), and the 
function Vl(x, tf + . . . t Vltx, t) is positive definite. 

2. ‘Ihe derivatives relative to system t 1.1) are 

I4 = f‘ (V, t) + we @, t) (s=i, . . ..k) 0.2) 

where Ws( x, t) < 0 and are continuous. 

3. Each of the functions f,(V, t) is non-decreasing with respect to 

the functions V,, . . ., Vs_l, Vs+l, . . . , Vk in G. 
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4. ?he solution y1 = 0, ..,, yk = 0 of the system 

dY* - = f, (f/l, * l l , f/k, 9 dt 0.3) 

is stable (or, asymptotically stable) with respect to yl, . . . , yl under 

the conditions yl,, >O, . . . , yl,, >O. 

‘Ihen, the unperturbed motion x = 0 of system (1.1) is stable (or, 

asymptotically stable). 

If the functions V,(x, t), . . ., Vk(x, t) admit thereby of an infini- 
tesimal upper bound and if the stability of the null solution of system 
(1.3) is uniform with respect to to (or, the asymptotic stability is uni- 
form with respect to ylo, . . .) y&t toIs then the stability of the un- 
perturbad motion will be uniform with respect to to (or, the asymptotic 
stability will be uniform with respect to x,,, t,). 

Proof. Let the conditions 1. 2, 3 be fulfilled and let the nuI1 solu- 
tion of systela (1.3) be stable with respect to yl, . . ., yl under the con- 

ditions yle > 0. ,.., ylu >O. 

Let there be given any positive number A(0 < A < If). Accordlng to 1 

0 < inf [VI@, t) +... + V, (2, t) when 11% I/ > A, t > 01 < R 

Therefore, if we take a positive number 

e(A)<inf [V& t) +...+ Vl (2, t) rhenpz[>A, t> 0] 

then 

Qzl<A when t>O, W, 4 +-.+ V, (2, f) -G e 

6s virtue of the assumption of stability for the null solution of 
system (1.3) with respect to yl, . , . , y1 when yr,, 2 0, . ..S Y’u> 0, 

along e(A) for te > 0, there is found a positive number 8(~ $)) (0 < 
‘8 < E < R) such that 

I Y1+ @, Yo, to) 1+ * * * + I Yl+ u, Yo, $0) I < e 

for all t St,., when jylOl t . . . + IykOl (6, yle 20. ..‘, yzo 20 (the 
upper integral y+( t, ye, to) of system (1.3) exists according to 
Iasenski’ s theorem). 

The function I Y1 (x, to) 1 + . . . t 1 vk(X, to) I admits of au infinitesimal 
upper bound, and therefore for 6 and t,, there is found a positive number 

51(&S to) = q(A, to) such that 
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I Vl (zo, lo) I+ . . .+lV,(q, to)168 whenlIzoII6’1 

Let us show that for any perturbed motion X( t, x,, , t,,) 

12 (4 ~0, to) II < A when t > 20 

and when the initial data is 11 x0)( < T), t,, >, 0 (0 < q(A, to) < A). 

Let us assuue that this is not the case, i.e. there are found x,,*, t* 

dl~~*II 6% t* > to) such that Ilx(t, xc*, to) 11 < A when t E [t,,, t’), 

but 11 x(t*, q,*, to) 1) = A. 

Let us set ysO* = VJX& $)I. Then by choosing q 

I !/lo* I + - ..+Iy,‘~=IV~(~O’,~O’~J+...+I~~~~0~:~O~l6~ 

but according to 1 

and bY choosing 6 

1 a+ (4 YO', to) I + . . . + I yl+ (4 .YO*, to) I < f on PO, t’l 

Let us consider (as the solution of system (1. l), (1.2) with continu- 
ous right-hand sides) the functions Vs(x( t, zO*, to), t) which are con- 
tinuously differentiable with respect to t in the Interval [t,,, t* + At). 
By virtue of 2 

dv, (x (C, 20.) Co), t) 
dt 6 r, (v (z (4 zo* # to), t), t) (I = 1, . . . . k) 

when t E it,,, t* + At), (At > 0 Is sufficiently small), therefore, by 
applYlng Uazewski’s theorem we get 

v; (2 0. zr’ , to), t) < Y,’ 0, Yo. * to) (a=l,...,k) 

when t E [t,, t*l, and conseauen.tlY 

1 1 

2 Iv, (2 (4 zo*, to), t) < c I Y,+ (h 310. * to) I < 43 
-4 ET=1 

But then, by choosing E, /I x( t, x0 l , to) (1 < A for t E [tc, t*l and. 
in particular, 11 x( t*, xc l , t,,) 11 < A, which contradicts the assumption 

we have made. The contradiction proves the stability of the unperturbed 
motion x = 0 of system (1.1). 

Here, if the stability of the null solution of system (1.3) is 
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uniform with respect to t0 and if the functions Ylt . . ., Vk admit of an 
infinitesimal upper bound, then the numbers -S(E) and q(6) = $4 may be 
chosen independently of to, i.e. the stability of the unperturbed motion 
x = 0 of system (1.1) will be uniform with respect to to. 

Let the null solution of system (1.3) be asymptotically stable with 
respect to yl. . _. , yl under the conditions ylu >/ 0. . . . , yl >,O, i.e. 
along with any positive number a < 6 for given to, yu, 

IYJ + **. 

(ll%,k ?‘ 
+ frcol *f 6, yl,, > 0, . . . , yt,, > O), there if found a T(a, 

to, yg) > 0 such that, 

Then 

i v, (r V, 30, to) 4 < a when t > CO + T 

r=1 

In fact, by assuming contrarily the existence of a t+ & (tu + 7’. m) 
such that Yl(v( t+, sop t,), t+) + . . . + Vl(x( t+, x0, t,), t+) 2 a. we 
are led to a contradiction with the estimate 

1 1 

x Y, @@s zo, Co), Cl <x Y*‘k WI* Co) 
6==f a=1 

which can be derived for the segment [to, t’3 analogously to the pre- 
vious case. 

TINS, for II x,,II % q we have 

By virtue of the positive definiteness of Vl(x, t)+ . . . t Yl(x, t) it 
follows that lim /ix{ t, x0, to) 1) = 0 as t - a, and that the unperturbed 
motion x = 0 of system (I. 1) is asymptotically stable. 

Here if the asymptotic stability of the null solution of system (1.3) 
is uniform with respect to yO, to, and if the functions Y1, . . , , Vk 
admit of an infinitesimal upper bound, then the number T can be chosen 
independently of to, yo, x,,, i.e. 

Y, (~(t, 5, to), t) -, 0 when t --, oc 
6=1 

uniformly with respect to x0, t,,. 

t - m, llxw X0’ to) II - 
Hence it is easily concluded that when 

0 uniformly with respect to x0, to, and then 
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from this it follows that the asymptotic stability of the unperturbed 
motion x = 0 of system (1.1) is uniform with respect to x,,, to. The 
theorem is proved. 

Coro~iary (k = 1 = 1). In r let there exist a 
tion V(x, t) whose derivative relative to system 

3 = f (V, t) + w (2, t) 

positive definite func- 
(1.1) is 

where W( X, t) < 0 and f( Y, t) is such that the solution y = 0 of the 
equation 

is stable (or, asymptotically stable) when ye > 0. 

Then the unperturbed motion x = 0 of system (1.1) is stable (or, 
asymptotically stable). Here if the function V admits of an infinitesimal 
upper bound and if the stability of the null solution of equation (1.4) 
is uniform with respect to to (or, the asymptotic stability is uniform 
with respect to x0, to), then the stability of the unperturbed motion 
will be uniform with respect to to (or, the asymptotic stability will be 
uniform with respect to x,,, to). 

This proposition has been proved by Kordunianu M, and in turn, it 
generalizes the classical theorem of Liapunov [ll on the stability of 
mot ion 

f(V, t)rO 

its modification, proposed by Ibrashev [7! 
00 

f = L I 0 w I v, L = const > 0, 
s I 0 M I dt -cc- 

Persidskii’ s theorem [81 

0 

on uniform stability 

Liapunov’ s theorem on asymptotic stability [l] and its modifications 

obtained by Massera [91, Krasovskii [IO], Zubov [II] 

m 

f=-~((t)C(V)(cp(f)ZO,~cP df=-, c(O)=O, 
Q 

(C is a strongly increasing function of V); 

Malkin’s theorem 1121 on uniform asymptotic stability [91 

f= -“c(V) 
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It is also an adjunct of the results of Stokes [13] and Rakhmatullina 

[141. 

Example 1.f. Problem of the stability in the sense of Liapunov of 
bodies with variable mass. 

Let the right-hand sides of the equations of perturbed motion (1.1) 
be holomorphic functions of x with continuously differentiable and 
bounded coefficients, approaching constants as t - 00, i.e. lim Xi( x, t) = 
Xi*(x) as t - m. 

In the case of the limit system 

dXi 
--& = Xi’ (2) 

which according to Liapunov is a special case, Aminov [151 has proposed 
a method of constructing the functions V. The function of Aminov is a 
quadratic form 

n v=f 2 Pij tt) “i xj (P*j tt) = Pji tt)) 
i. j=l 

whose derivative relative to the equations of perturbed motion (1.1) is 

n dPij 
ti = 2 rxixj 

i, j=l 

The requirements of positive-definiteness of the function V and of 
the negative semidefiniteness of the derivative V are sufficient condi- 
tions for stability according to Liapunov’s theorem. For bodies of vari- 
able mass they do not usually coincide with the necessary conditions for 
stability [15]. Let us see how these sufficient conditions for stability 
can be relaxed when the Aminov’s functions are used in Kordunianu’s 
theorem. By assuming that V is positive definite, we find a positive 
number B such that 

Let us transform the derivative Vto the following form 
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(i,j=l,...,n) 

1. 

(1.5) 

then the solution y = 0 of the equation 

$=B,$~+$ 

.i 

is stable, and the conditions of Kordunianu’s theorem (as’well as the 

conditions of Ibrashev’s theorem) are fulfilled since here the unper- 
turbed motion x = 0 is stable. 

Aowever, for bodies of variable mass 

* dPij 

11 1 
dt dt = I Pij (m) - Pij (to) I < m 

and therefore (1.5) holds, if the derivatives dpij/dt change sign a 
finite number of times on the semi-axis [O, a). As is apparent, this 
happens in a large number of practical cases of interest. In these cases, 
therefore, the only sufficient stability condition is the condition of 
positive definiteness of quadratic form V which, as from the results of 
Aminov [151, often is also the necessary stability condition. 

Exorple 1.2. 

dxl 
dt == (sin C + 6’) xi + (sin C - e-C) za - sina C (2i* + six& 

da 
- = (sin C-e-‘) zl + (sin C + e-C) xa - sin2 C (q”xa + zxs) dt 

(1.6) 

Let us seek the Liapunov function as a quadratic form with constant 
coefficients 

V = i/x (xia + 2Bx,x, + Axa2) 

Its derivative relative to system (1.6) is 

Y@) = [(A + B) sin t + (A - B) e-‘1 xl2 + [(I + A + 2B) sin C + (2B - A - i) e-‘1 aixx + 
+ [(A + B) sin C + (A - B) e-‘1 xaa 

3(“) = - sin’ C [xl4 + 2Bzrsxa + (1 + A) xlaxa’ + 2Bxrx9 + Ax#] 

For arbitrary A and B the function V does not satisfy Liapunov’s 
theorem on the stability of motion. Let us try to satisfy Kordunianu’s 
theorem by assuming Vt2’ = q( t) V. 
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This equality can occur in two cases: 

1) &=&=I. ‘pI (t) = 4 sin t when ‘VI = l/z (ZI + z# 

2) Aa=l, BI=-i, qa (t) = 4e-t when V, = 1/Z (zI - Q’ 

The function V,. and also V2, will not be positive definite functions 

and, consequently, will not satisfy Kordunianu’s theorem. However, the 
two functions VI and V2 satisfy the conditions of Theorem 1.1. In fact, 

1. The functions VI > 0, V > 0 admit of an infinitesimal upper bound. 
22 and the function VI t V2 = x1 t x22 is positive definite. 

2. The derivatives are fib 4 sin t VI, i2 d 4 emt V2. 

3. The function 4 sin t VI does not decrease with respect to V2, and 
the function 4 eWt V2 does not decrease with respect to VI. 

4. The null solution of the equation 

4/l 
- = 4 sin tyl, 

dt 
dya 

- = 4e-’ y* 
dt 

is uniformly stable with respect to t,,. 

Hence the unperturbed motion x1 = 0, x2 = 0 of system (1.6) is uni- 
formly stable with respect to t,,. 

2. Let \he functions f,( V, t) be definite and continuous in G or in 
the half-space E( t > 0) of the (k + l)-dimensional space {V, t). 

Definition. The null solution of system (1.3) is called +yl-unstable 

(or, +yl-unstable in G) if for any positive numbers 6, E, t,,, satisfying 
the conditions 0 < 6 < E < R and E sufficiently sma.11 (or, 6 < E = R, or 
6 < E <*m when E is arbitrarily large), 

7’ and a point x0( 11 x,, 11 < 6) 

there is found a positive number 

such that every solution y(t, yO, t,) of 
system (1.3) with initial data y, 
for all values of t E [t,, to + T , 3 

= Vs(x,,, t,) (s = 1, . . . , k), to > 0, 
remains in G and satisfies the con- 

ditions 

Y, (to + T, ~10, . . . 9 ylro, to) > 8, I YlO I + * * * + I YkO I < 6 

For example, the null solution of the equation 

dn 
- = cp (Yl) P (0 dt 

where 9(yl) > 0 when y1 > 0 and q(O) = 0, is +yl-unstable in the half- 
plane E( t >O) if the function V,(x, t) can take positive values for 
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arbitrarily small Ifzcf[ and for any -5 > 0. 

Tkeorcnr 2.1. Let there exist functions YI(r, $1, . . . , V,tx, tl having 
the following properties in I-. 

1. ‘Ike function yl(x, t) admits of an infinitesimal upper bnrund, (or, 
is kunded). 

2. The derivatives relative to system fl.9 are 

where IF&l;, t) >f3 and are continuous. 

to 

is 

3, Each of the functions f,fY, t;l will be nun-decreasing with respect 

the functions V,, V ‘*“I $.-I, Vs+l, . . . , Vk in region G. 

4. The null solution of the systlrr;m 

for arbXtrariIy smll 0 < E < R (or, far E = A, or for suff~e~eat~y large 
E > 0) W@ can find an ir(O < it ( H) Such that V,(x, t) f E rhea II%\] f 8, 
t >, 0. Xt is then required to praw that for au arbitrary nuu~bcsr A(0 < 

A < h) sad for to 3 0 there cannot be found a A(0 < h < A) SWb that 
rhen 11x/f < h for alf t z t0 we would have f/ xf t, x0, to) 11 < A. 

Let us assame, eantr~r~ly* that stleh 8 A does exist, Let us designate 

Y = V (x,, to). By virtue of tha continuity af Y, with resD#ct to x0 
redocan :asulae that h iS so small that 

S=l S=l 

hccarding to 4, there can be found a T > 0 and ii x0* 11 < h such that 
for all t E [to, to + d the solutions y( t, yo*’ to) of system (2.3) will. 
remain In C, and yl( to + T, yO*. ta) > E. 
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the interval [ te, to + T + At), and by virtue of 2 in this interval they 

satisfy the inequal it ies 

dV, (z (t, doer to), 4 
dt 

> f, (V (z P* 5+, to) 0, t) (s = I, . . ., k) 

when At > 0 is sufficiently small. Hence, by virtue of 3 Wazewski’s 
theorem is also applicable, according to which there exists the lower in- 

tegral y-( t, yu*, t,,) and 

v, (r (4 zo*, to), 4 > ys- (4 yo*, to) for 1 E [to, t0 + T] (I = 1.. . .) k) 

and. in particular, Y1(w( t, so*, to), t) 2 yl-( t, yo*, to). 

But then V,(x( t,, + T; x0*, to), t,, + T) > yl-( t,, f T, y,,*, t,,) > E. 

which, according to the choice of E. signifies that 11 X( to + T, zO*, to) 11 

> h > A in contradiction to the assumption we made. The contradiction 
proves the theorem. 

CoroZZary (k = 1). Let there exist a function V(x, t), admitting of an 

infinitesimal upper bound (or, being bounded), which can take positive 

values for arbitrarily small llxll and for any t > 0, and whose derivative 

relative to system (1.1) is v>f(V, t) where f(V, t) >O when t >O and 

0 < V < sup[V when (x, t)~ r] (or, for any 0 < V < m) and such that for 
an arbitrary positive number 1 there is found a continuous function 

co 

m (0 > 0, 
s 

m (t) at = 00 

0 

such that 

f (V, 1) > m (t) when t>O, Z<V< SUP IV when(Z,l)E rl 

(respectively, for any 1 < V < 0~). Then the perturbed motion n = 0 of 

system (1.1) is unstable; 

This proposition is a modification of Chetaev’s instability theorem 
[2] and contains both the classical theorems of Liapunov [d 

f = m (t) cp 0% cp(V)>O when V>O 

and certain of their generalizations 13, II]. 

3. Let there be given a real function V(r, t) continuous in r, having 
in r continuous partial derivatives up to the kth order with respect to 

X1’ **a, Xn’ t. Let the functions X,, . . . , X, have continuous derivatives 
up to the (k - 1)st order in r. Let us denote the derivative t relative 
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to system (1.1) of the function V by V”‘(x, t) 

‘Ihe second derivative of the function V relative to system (1.1) is 
given by 

* a&7(1) 
V2) (5, i) = 2 -Xi (5, t) +$ 

i=l axi 
If the derivatives V( ‘I, V( ‘), . . . , V’ ” are thus defined, then the 

derivative of the (s + 1)st order of the function V relative to system 
(1.1) is given by 

From Theorem 1.1 ensues the following test for the stability of motion. 

Let there exist a positive definite function V(n, t) whose kth order 
derivative relative to system (1.1) satisfies the condition I”” < 
f(V, v(l), . . . . P-l), t), where the function f is non-decreasing with 
respect to V, V(l), +.., Vtkm2), and let the null solution of the equa- 

tion 

be stable (or, asymptotically stable) with respect to y when y0 >O. 
Then the unperturbed motion r = 0 of system (1.1) is stable (or, asymp- 
totically stable). 

In fact, the functions VI = V; Vz = V(l), .,. . , vk = vckwl) satisfy 

the conditions of Theorem 1.1 for l = 1, since f, = V(‘) (s = 1, . . . , 

k - 1) does not decrease with respect to V, V(l), . . . , V( k-1), and 
afk = f dOeS not decrease with raSpact t0 v, Y(l), ,..‘ v(k-2)* 

From Theorem 2.1 a test for instability is obtained in an analogous 
manner. 

Let there exist a function V(x, t), admitting of au infinitesimal 

upper bound (or being bounded), whose kth order derivative relative to 
system (1.1) $b,>f(V, If(‘), . . . . Vfk-lt, tf, where the function f is 
non-decreasing with respect to V, V’ ’ ), . . . , V( ‘-’ ), and let the null 
solution of the equation 

$=f(y,-g )..., -g,t) 



The theory of stability of Dotion 1519 

be ty-unstable in the region IyI + 1 dy/dt 1 + . . . + ) d”y/dtkl I < R, 

t >O, or in the half-space E( t > 0) of the (k t l)-dimensional space 
{y, dy/dt, . . ,, dk-‘y/dt’-‘, t). Then the unperturbed motion x = 0 of 

system (1.1) is unstable. 

Let us consider in detail the case of k = 2 and, which is of most 
interest in applications of a linear function, f. 

Theorem 3.1. If there exists a positive definite function V(x, t) 
whose second derivative relative to system (1.1) Vc2)<p(t)V(‘), where 
the continuous function p(t) satisfies the condition 

co 1 

s s exp p(z)dzdt<oo 

t. to 
(3.1) 

then the unperturbed motion r = 0 of system (1.1) is stable. 

Proof. Under the conditions of the theorem the function f = p(t)V(‘) 

1s non-decreasing with respect to Y since, clearly, it does not contain 
Y. The null solution of the equation 

is stable with respect to y; this follows from the form of the general 
solution of this equation 

and from the boundary condition occurring in its integral. Therefore, the 
conditions of the stability test, which were formulated at the beginning 
of this paragraph and on the basis of which we decided upon the stability 
of the motion, are satisfied. 

Condition (3.1) is satisfied, for example, by the functions 

P = const < 0, p = - + (a = comt > i) 

Theorem 3.2. If there exists a bounded function V(r, t) whose second 
derivative relative to system (1.1) satisfies the condition Yt2) >aV + 

2bV( ‘), where a and b are constants, a >O and, moreover, b >O when 

- 0, and if the function [d(b2 t a) - bjV(n, t) + V(“)(x, 

;oLtive values for arbitrarily small fix 11 and any t 

t) can take 
> 0, then the un- 

perturbed motion of system (1.1) is unstable. 

Proof. under the conditions of the theorem the function f = aV f ZbV(” 
is non-decrsasing with respect to V since a 20. The null solution of 
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is +y-unstable in the half-space ik;( t > 0) of 
<y, dy/dt, t). l[n fact, the general solution 
a>Ois 

the three-dimensional space 

of this equation in the case 

Y 
= (I@+ fl - b) Yo + NY ! WI e (lQq&b)(f__t,) 

2)/b2+a -I- 

-i- 
f dba + b) YO - (dyld0 

2vb2+a 
O efb--u'bti_a)@--tr) 

According to the conditions of the theorem there is found an arbi- 

trarily small IjzOll such that 

(db2+ 7 - b) v (ZO, to) f V(l) (so, lo) ft (fm - b) y. + (dy j d$,> 0 

and, consequently, y * m as t - 0~. Bowever, if o = 0, then the general 
solution has the form 

!/ = !h+ (dy!dr)o [,zb(t-Q__ 11 (b > 01, 
2b Y=Yo$ (b=O) 

and here also y * 43 as t * aD. 

Since the conditioas of the instability test formulated above are ful- 
filled, the theorem is proved. 

The second derivative of function Y relative to the equations of per- 
turbed motion, was used by lbrashev who proposed a theorem on the in- 
stability of motion [7]. We can prove the following extension of 

rbrashev’ s theorem+ 

Tkorem 3.3. If there exists a bounded function V(x, tf such that fur 
arbitrarily small IIx/l and any t >O the functions V(x, t-1 and V”‘(x,t) 

simultaneously may take positive values, and Vt2’ (x, t) > 0 (V (2) E 0) 

in the set E(k > 6, V(l)-> 01, then 
system (1.1) is unstable+ 

Let us choose, in an arbitrarily 

turbed laotion, a point (x0, to) E I- 

the unperturbed mation x = 0 of 

small neighborhood of the unper- 

at which 
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The perturbed motion x( t, x,,, tO) will remain in the set E(V > 0. 
V(l) > 0) until it leaves r since otherwise for some T > t,, we would have 

V(x(T, x0, t,,). ‘I)Y(‘)(x(T, x,,, tn), T) = 0 when V(x(t, x0, t,,). t)Y(‘) 

(x(t, X0’ Q). t) > 0 for t E [to, 77. 

But this is impossible since for t E [to, ‘I) 

v (5 (t, 20, to), +Y(l) (z (4 zo, to), q = 

= [V (20, to) + 5 Y(l) dt] [V(l) (zo, to) + i v(2) dt] >v (q. to) Y(l) (20, to) 

f. 1. 

Consequently (by virtue of the continuity of V(x( t, x0, to), t) V( ‘) 

(x(t, x0, to). t) with respect to t) 

y (z (T, zo, to), T) Y(l) (z (T, zo, to), T) > v (50, to) v(l) (x0, to) > 0 

But in the set E( Y > 0. V( ‘) > 0) 

t 

v(l) (z (t, zo, to), t) = v(l) (20, to) + s v(Z) dt > v(l) (20, to) 

1. 
t 

v (2 (t, zo, lo), t) = v (zo, to) + s Y(l) dt > v (20, to) + V(l) (zo, Co) (t - 20) 
1, 

The incompatibility of the latter inequality with the condition of 
boundedness of V(x, t) indicates the instability of the motion. 

BIBLIOGRAPHY 

1. Liapunov, A.M., Obshchaia zadacha ob ustoichivosti dvizheniia (The 
General Problem of Stability of Motion). Collected Forks, Vol. 2, 
Akad. Nauk SSSR, 1956. 

2. Chetaev, N.G., Ustoichiuost’ dvizheniia (Stability of Motion). GITTL, 
1955. 

3. Chaplygin, S. A., Novyi mftod priblizhennogo integrirovaniia diffe- 
rentsial’ nykh uravqenii (New methods for the approximate integra- 
tion of different&l equations). Izbr. Trud. po Mekhanike i Matr- 

mot ike, GITTL. 1954. 

4. Wagerski, T., Syst&nes des Equations et des inegalitds diffe’rentielles 
ordinaires aux deuxii?mes membres monotones et leurs applications. 
Ann. de la Sot. Pol. de Math., 23. 1950. 

5. Azbelev, N. V. and Tsaliak. Z. B. , Ob integral’nykh neravenstvakh, 1 
(On integral inequalities. 1). Matem. Sborn., Vol. 56(98), No. 3.1962. 



V.M. Matrosov 

6. Kordunianu, K., Primenenie differentsial’nykh neravenstv k teorii 
ustolchivosti (Application of differential inequalities to sta- 
bility theory). Analclc Stiintifice ale Univ. ‘AI. i. Cuss” din 

Iasi, Section 1, Vol. 6, No. 1, 1960. 

7. Ibrashev, Kh. I., 0 vtoroi metode Liapunova (On the second method of 
Liapunov). Zzv. Akad. Nauk Kazakhsk. SSR, Ser. aster. i mekh., 

No. 42, 1947. 

8. Persidskii, K. P., K teorii ustoichivosti reshenii differentsial’nykh 
uravnenii (On the theory of the stability of solutions of differ- 
ential equations). Usp. Mat. Noel, Vol. 1, Nos. 5-6, 1946. 

9. Yassera, J. L. , Contributions to stability theory. Annals of Math., 

Vol. 64, pp. 182-206, 1956. 

10. Krasovskil, N.N., K teorii vtorogo metoda A.I. Liapunova issledova- 
nlia ustoichivosti dvizheniia (On the theory of A.M. Liapunov’s 
second method in the investigation of the stability of motion). 
Dokl. Akad. Nouk SSSR, Vol. 109, No. 3. 1956. 

11. Zubov. V.I., Matraaticheskic aetody issledovaniia sister avtomati- 

chcskogo rcgulirovaniia (Mathematical Methods for Investigation of 

Autoaatic Control Systers). Sudpromgiz, 1959. 

12. Yalkin, 1.0.. K voprosu ob obratimosti teoremy Liapunova ob asimpto- 
ticheskoi ustolchivosti (Cm the problem of the reversibility of 

Liapunov’s theorem on asymptotic stability). PMM Vol. 18, No. 2. 

1954. 

13. Stokes, A., The application of a fixed-point theorem to a variety of 
nonlinear stability problems. Annals of Math. Studies No. 45, Vol. 
5. 1960. 

14. Rakhmatullina, L. F., Ob odnom primenenii uslovii pazreshieosti za- 

dachl Chaplygina k voprosam ogranichennosti I ustoichfvosti 
reshenii differentsial’nykh uravnenii (On an application of the 
conditions of solvability of Chaplygln’s problem to the questions 
of the boundedness and stability of the solutions of differential 
ewat ions). ZZV . VUZ, Matenatika, No. 2, 1959. 

~5. Aminov, M.Sh., Nekotorye voprosy dvizheniia i ustoichivosti tverdogo 
tela peremennoi massy (Some questions on the motion and stability 
of rigid bodies of variable mass). Trud. Kazansk. Aviats. In-ta, 

Matematika i Mekhaniko, Vol. 48, 1959. 

Translated by N.H.C. 


