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This paper deals with an attempt to obtain a test for the stability of
motion with the simultaneous use of several functions V. In this comnec-
tion each function V can satisfy less rigid requirements than the one
function occurring in the corresponding theorems of Liapunov’ s second
method [1,2]. This allows us to expect that the use of several functions
¥V can lead to a more flexible mechanism,

The work is based on Chaplygin’s theory of differential inequalities
{3]. That is, we shall apply the following theorem on differential in-
equalities of Wazewski [4].

Let the following system of equations be given

dy
7f*ﬁ@h~-wm‘) (g=1,..., k) (0.4)

where the f‘ are definite and continuous in some open region Q in a

(k + 1)-dimensiona]l space; each function f: is non-decreasing with re-
spect to y;, ..., Yy, Yg4ys -0 Yp in region Q. Then, through every
interior point (Yyg0 +++s Yppo t) of region Q there passes one upper
integral y (¢, Yo+ t) and ome lower integral Y (t, y5, ty) of system
{(0.1) with respect to this point®* and to the interval [to, a). The number
o can be chosen equal to ® or such that as t — a the representative point
approaches the boundary of Q along the upper (lower) integral.

Let functioms y,(t), ..., y,(%) be given, continuously differentiable
in the interval [to, o), such that P (t) = Yo Yy (8, ...,
¥(t), ) EQwhen t € [, .

* These integrals are characterized by the fact that for every integral
y(t, ¥y, to) passing through the point (y, to), for ¢ € ey, o:

y‘- (87 Yo, to) <ys (t: Yo, 10) < y¢+ (!, Yo, to) {8 = 1: < vy k)
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q"() f.(‘pl(t)f'-"wk(t)vt) when ¢t E [t,, o) (s=1,...,k

then

Y, (1) <yt (8 Yo, to) when £ E [to, @) (s=1,...,58
2. However, if

%()

2L, . .., P (t), t) when t E [t, @) (s=1,...,k
then we shall have
P, () >y, (¢, Yo, to) when t & [ty, ) (#=1,..., 5

It wmay be possible to apply other known theorems on differential and
integral inequalities [5}. Then condition 3 in the obtained tests of
stability and instability would be replaced by some other reguirement.

The stability theorems obtained with the use of several functions V
enable us to construct tests for stability and instability which utilize
the properties of derivatives of the functions V of order higher than
the first. We shall consider in detail such a family of tests with de-
rivatives of the first and second order.

1. Let there be given the system of equations of perturbed motion

ax,
{ Xi(xv"-lxn’t) (i=i,...,n) (i'i)
The set of n real numbers (x;, . x,) is considered as a point x in
an n-dimensional space R" with the norm nx | -= [z | + ... + Ixn

The functions X (x, t) are definite, continuous, and satisfy the
Lipschitz conditions with respect to x in the region I

lzl<H, t>0 (H = const >»0)
Let
Xi0,)=0 (i=14,,..,n
that is, system (1.1) admits of the unperturbed motion x = 0,
The perturbed motion is characterized by the set of functions
Tt Ty to) = {By (L Tygs oo o s Tnoy Lo)s o o o 3 Tn (Ey Tygs + « + 5 oy Lo)}

which are definite and continuous when (x,, t))&Tl, t >1t,, and are
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continuously differentiable with respect to ¢.

Let us consider the real functions V,(x, t), ..., V,(x, t) which are
definite and continuous in region ' together with their derivatives
Vilx, t), ..., V,(t) with respect to time t, taken relative to the equa-

tions of perturbed motion (1.1), and which vanish for the unperturbed
motion, 1.e. V (0, t) =0, VS(O, t} = 0. For the set of these functions
V={(V, ..., V;) we introduce the norm vl = ‘Vl‘ + ...+ 'Vk"

The functions fl(V, t), ..., fk(V; t) will be assumed to be real, de-
finite and continuous in region G

[Vi<R, t>0 (Ry>R=sup[|V (z, t)|when(z, ) ET] or R;= )

Let us agree to call the functions f_(V, t) non-decreasing with re-
spect to functions V,, ..., VQ~1' Vs+1, oo, ¥Vpin G if, for arbitrary
points

Vi, LV ) EG Vi, L, Va*™, VX Vep®, .., Vi) e 6
satisfying the inequalities

VA SVE, . Ve SV Ve S Vot . Vi SV
there holds
IR UALTTIN L N AN AL RN Gt a0 2 A (£ I Vi*, t%)

For example, the function f (V. t) not depending on V;, ... v

s=1*
Vs+1, ..+, V, is non-decreasing with respect to V,, ..., V__,, Vs+l’
.oy Vk in G.
Theorem 1.1. Let there exist functions V {(x, t), ..., V&(x, t),

possessing the following properties in I'.

1. The functions V(x, t) 20, ..., V(x, t) >0 (1 <KIK k), and the
function V (x, t) + ...+ Vg, t) is positive definite,

2. The derivatives relative to system (1.1) are
Vo= 1V, ) + W, (2, 1) =1, ..., 5 1.2)

where Ws(x, t) < 0 and are continuous.

3. Each of the functions fs(V, t) is non-decreasing with respect to
the functions ¥, ..., Vs—l’ Vs+l’ voey ¥V in G
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4. The solution y; =0, ..., y, =0 of the system

ay

-dT.:fl(ylv-'-’ylnt) (¢=1,..., 8 (1"3)

is stable (or, asymptotically stable) with respect to y;, ..., y; under
the conditions y,, >0, ..., y;, >0.

Then, the unperturbed motion x = 0 of system (1.1) is stable (or,
asymptotically stable).

If the functions V;(z, t), ..., V,(x, t) admit thereby of an infini-
tesimal upper bound and if the stability of the null solution of system
(1.3) is uniform with respect to t; (or, the asymptotic stability is uni-
form with respect to y,,, --., Ypos tg), then the stability of the un-
perturbed motion will be uniform with respect to t, (or, the asymptotic
stability will be uniform with respect to x,, t,).

Proof, Let the conditions 1, 2, 3 be fulfilled and let the null solu-
tion of system (1.3) be stable with respect to y;, ..., y; under the con-
ditions 5,4, >0, ..., y10>0.

Let there be given any positive number A¢(0 < A < H). According to 1
0 <inf[Vy(z, t) +... + V,(z, ) when|lz|[>4, t>0]<R

Therefore, if we take a2 positive number
e(A) <inf [Vy(z, 8) +...4 V; (2, t) when[z|>A4, t> 0]
then
[rj< 4 when £ >0, Vilz, ) +...4 V, (=, ) <&

By virtue of the assumption of stability for the null solution of
system (1,3) with respect to y,, ..., y; when Y020, ..., . 20,
0

along &(4) for t, > 0, there is found a positive number 5(e ty) (O <
‘8 < ¢ < By such that

!yl+(tvy°| to)l+.. '+Iy(+(t9 Yo, to)‘<3

for all t >1¢, wgen lyml + ...+ kaol S8, y19 20, «.., ¥jg =0 (the
upper integral y (t, Yor %) of system (1.3) exists according to
Wazewski’'s theorem).

The function |V1(2» to)| + ... + ‘Vk(" to)‘ admits of an infinitesimal
upper bound, and therefore for & and to there is found a positive number
(s, ty) = N(4, t,) such that
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|Vi(zo, 20} |+ ... 4+ | Vi(zo, to)| <O whenfizmll <<
Let us show that for any perturbed motion =x(t, zg. tg)
J=(t, =0, t)|<< A whent >t
and when the initial data is ||xoll <. g >0 (0 <ned, £ < 4.

Let us assume that this is not the case, {.e. there are found zo‘, t*
dhv”<q,H>t&smhwn|hu,%ﬂt@”<AWMntE[%,HL
but ||xces, 540 t) || = 4.

Let us set y'o‘ = Vs(zo‘, ty) . Then by choosing 1
e 4. F e’ =1V (@, 66°) |+ . .+ [V (@71 80) | <O
but according to 1
" 2 0,..., y," 20
and by choosing &
[ (¢ w t) [+ ..+ Lyt (8, ¥0°, ) [ <e on [t £°]

Let us consider (as the solution of system (1.1), (1.2) with continu-
ous right-hand sides) the functions Vs(z(t, xo‘, ty), t) which are con-
tinuously differentiable with respect to t in the interval [to, t* + Aoy,
By virtue of 2

dy. (:B (" 20., to), t)
dt <tV (=t 20", t), 1), 1) (#=1,.... k)

when t € [to, t* + At), (At > 0 is sufficiently small), therefore, by
applying Wazewski’ s theorem we get

Vi (z(s 7", 8,), 1) Sy,* (2, %0, to) (¢=1,....,K

when t € ['o' t*] , and consequently
l i
S, @t 2, ), )< D) {4t 0y 1) | <e
=1 8=]1
But then, by choosing e, ”z(t, 2% t) H < Afor tE [to, t*] and,

in particular,l'x(t‘, x5 tg) | < A, which contradicts the assumption
we have made. The contradiction proves the stability of the unperturbed
motion x = 0 of system (1.1).

Here, if the stability of the null solution of system (1.3) is
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uniform with respect to ty and if the functions V., ..., Yk admit of an
infinitesimal upper bound, then the numbers.5(g) and n(8) = 7n(A) may be
chosen independently of t,, i.e. the stability of the unperturbed motion
x = 0 of system (1.1) will be uniform with respect to to-

Let the null solution of system (1.3) be asymptotically stable with
respect to y;, ..., y; under the conditions y;, 20, ..., y;o =20, i.e.
along with any positive number o < § for given tys Yoo (on }?g .
‘ylol + ... + 'yk0‘<§ 5, y10;> 0, ..., yj9=0), there if found a T(a,
ty. ¥o) > 0 such that

1
219 ot} | <a whent>t+ 7T
#=1

Then

1
EV,(z(z,x.,, to)!)<<a when t >t + T
#==1
In fact, by assuming contrarily the existence of a ¢t EE(:0 + 7T, ©
such that V(x(t', 25, tg), ) + ... + Vi(x(t', x5, tp), ) > a we
are led to a contradiction with the estimate

1 l
2 V; (I (tx %o, to), t) <E y5+ (tv Yo, to)
823 =1
which can be derived for the segment [to' t+3 analogously to the pre-
vious case.

mw,mr”%HaneMW

t
lim 14 t to), &) =
lim 3 V, (2 (t, @, t), ) =0
=1
By virtue of tye positive definiteness of Vl(x, )+ ... + Vl(z, t) it
follows that limllx(t, %9, tg) ” = 0 as ¢t = ©, and that the unperturbed
motion x = 0 of system (1.1) is asymptotically stable.

Here if the asymptotic stability of the null sclution of system (1.3)
is uniform with respect to Yor tgo and if the functions Vl' ey Vk
admit of an infinitesimal upper bound, then the number T can be chosen
independently of tgs Yoo %g. 1.e.

4
Ve (a(t, 2o, to), £)—> 0 when ¢ oo
8==1

uniformly with respect to %o, ty. Hence it is easily concluded that when
t - m.’|z(t, xg, tg) “ = 0 uniformly with respect to x,, t,, and then



1512 V.H. Matrosov

from this it follows that the asymptotic stability of the unperturbed
motion x = 0 of system (1.1) is uniform with respect to xg. tg- The
theorem is proved.

Corollary (k= 1 = 1), In [ let there exist a positive definite func-
tion V(x, t) whose derivative relative to system (1.1) is

V=fF, +W( t)

where W(x, t) < 0 and f(V, ¢} is such that the solution y = 0 of the
equation

dy
=11 (.4
is stable (or, asymptotically stable) when Yo 2 0.

Then the unperturbed motion x = 0 of system (1.1) is stable (or,
asymptotically stable). Here if the function V admits of an infinitesimal
upper bound and {f the stability of the null solution of equation (1.4)
is uniform with respect to ty (or, the asymptotic stability is uniform
with respect to L7 t;), then the stability of the umperturbed motion
will be uniform with respect to t, (or, the asymptotic stability will be
uniform with respect to x5, tg).

This proposition has been proved by Kordunianu [6], and in turm, it
generalizes the classical theorem of Liapunov [1] on the stability of
motion

FV, 6y=90

its modification, proposed by Ibrashev {7
o0

f=L|6@®)|V, L=const>0, Smanm<m
o
Persidskii’s theorem [8] on uniform stability

J=0
Liapunov’ s theorem on asymptotic stability [1] and its modifications
obtained by Massera [9]. Krasovskii [10], Zubov [11]

o

f=—90c) @®>0, {0 dt=co, c(0)=0,
Q

(¢ is a strongly increasing function of ¥);
Malkin’s theorem [12] on uniform asymptotic stability [o]
z-—-—-wC(V)
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It is also an adjunct of the results of Stokes [13] and Rakhmatullina

[14].

Example 1.1. Problem of the stability in the sense of Liapunov of
bodies with variable mass.

Let the right-hand sides of the equations of perturbed motion (1.1)
be holomorphic functions of x with continuously differentiable and
bounded coefficients, approaching constants as t - ©, i.e. lim Xi(z,t) =
Xi‘(x) as t ~ ®,

In the case of the limit system

a2 =X @ (i=1,...,n)

which according to Liapunov is a special case, Aminov [15] has proposed
a method of constructing the functions V. The function of Aminov is a
quadratic form

1 n
V=5 X py®zz () =p;®)
i, j=1

whose derivative relative to the equations of perturbed motion (1.1) is

. i dPi‘
V=D @ u
i, j=1
The requirements of positive-definiteness of the function V and of

the negative semidefiniteness of the derivative V are sufficient condi-
tions for stability according to Liapunov’s theorem. For bodies of vari-
able mass they do not usually coincide with the necessary conditions for
stability [15]. Let us see how these sufficient conditions for stability
can be relaxed when the Aminov’'s functions are used in Kordunianu’s
theorem. By assuming that V is positive definite, we find a positive
number B such that

n n .
1 dp;; 1 “| dpy;
V=g 2 |"@ | @+ =7 D | |mxers
i, j=1 i, j=1
1 n dpu n dPiJ n n dPu
S7 2 4 | @S 2 dt Z’v’<BV Z dt
1, j=1 i, j= 1 3=
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If

| |-
t,

dt < oo (,i=1,...,n) (1.5)

then the solution y = 0 of the equation

d n
%53

i,j=1

dp,-,-
dt |Y

is stable, and the conditions of Kordunianu’s theorem (as well as the
conditions of Ibrashev’s theorem) are fulfilled since here the unper-
turbed metion x = 0 is stable.

However, for bodies of variable mass

IS —d_t—dt' = | p;; (90} — pyj (to) | < o0

t

and therefore (1.5) holds, if the derivatives dpij/dt change sign a
finite number of times on the semi-axis [0, ®), As is apparent, this
happens in a large number of practical cases of interest. In these cases,
therefore, the only sufficient stability condition is the condition of
positive definiteness of quadratic form V which, as from the results of
Aminov [15]. often is also the necessary stability condition.

Example 1.2.

dx
—dTl =(sint 4 e") 71+ (sint — e") zg — 8in% ¢ (21 + ®17,3)

% = (sint—e™") 23 + (sin ¢ + €7*) x3 — sint (z,%25 + 249 (1.6)

Let us seek the Liapunov function as a quadratic form with constant

coefficients
V =1/3 (2 + 2Bx1x; - Axg?)
Its derivative relative to system (1.6) is
V=V 4w
V® = [(44B)sint+(A— B)et]e2+[(1 + A +2B)sint+ (2B — A4 —1) e ozg +
+((A+ B)sint + (4 — B) ¢™'] z?
V@ — —sin?¢ [21* + 2B,%3 + (1 + A) 212223 + 2Bmizs® + Azt
For arbitrary A and B the function V does not satisfy Liapunov’'s

theorem on the stability of motion. Let us try to satisfy Kordunianu’s
theorem by assuming (2 = () V.
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This equality can occur in two cases:

1) Ay=B, =1, @1 () =4sint  when Vi =13 (21 + 23)?
2) Ay =1, By =—1, @3 () = 4e-t  when Va=1/; (21 — z3)?

The function Vl' and also V2, will not be positive definite functions
and, consequently, will not satisfy Kordunianu’s theorem. However, the
two functions V1 and V, satisfy the conditions of Theorem 1.1. In fact,

1. The functions V1 >0, V2 > 0 admit of an infinitesimal upper bound,

and the function V1 + V2 = xi + x22 is positive definite.

2. The derivatives are Vl< 4 sin t V,, ‘;2 <46t V.
3. The function 4 sin ¢ Vl does not decrease with respect to V2, and
the function 4 ¢ ® V, does not decrease with respect to V;.

4, The null solution of the equation

din . dys _
% = 4 sin ty,, e =4ety,

is uniformly stable with respect to ty

Hence the unperturbed motion x = 0, xy = 0 of system (1.6) is uni-
formly stable with respect to ty-

2. Let the functions f (V, t) be definite and continuous in G or in
the half- space E(t>0) of the (k + 1)-dimensional space {V, t}.

Definition. The null solution of system (1.3) is called +y,-unstable
(or, +y,-unstable in G) if for any positive numbers §, e, t,, satisfying
the conditions 0 < §< ¢ < R and ¢ sufficiently small (or, § < e =R, or
8 < g <o when & is arbitrarily large), there is found a positive number
T and a point xo(IIxOH < 8) such that every solution y(t, y,, t,) of
system (1.3) with initial data Yoo = Vs(xo, to) (s=1, ..., k), ty >0,
for all values of t & [t t, + Tﬂ remains in G and satisfies the con-
ditions

0

Yr (o + T, Yios + - - 5 Yros Lo) > &, l!/10|+---+|yko|<5

For example, the null solution of the equation

d?/l

=@ ) p 1) (p(t)>0, biop(t)dt= qo) 29

where ¢(y,) > 0 when y; > 0 and ¢(0) = 0, is +y -unstable in the half-
plane E(t > 0) if the function V,(x, t) can take positive values for
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arbitrarily small iizn and for any t > 0.

Theorem 2.1. Let there exist functions V(x, t), ..., V,(x, t) having
the following properties in I

1. The function V,(x, t) admits of an infinitesimal upper bound, (or,
is bounded).

2. The derivatives relative to system (1.1} are

Vs = fo (V, t) + W, (x, 1) (s=1,..., k) (2.2)
where §;{x} £} >0 and are continuous.

3. Each of the functions f(V, t} will be non-decreasing with respect
to the functions ¥, v Vbl - V. in region G.

" s—l’
4. The null solution of the system

d
;‘; = fo(Ur v « v s Yo 1) (s=1, 0., B) (2.3)

is +y,-unstable (or, +y,-unstable in G).
Then the unperturbed motion x = 0 of system (1.1) is unstable.

Proof, Let the conditions of the theorem be fulfilled. According to 1,
for arbitrarily small 0 < e < B (or, for & = R, or for sufficiently large
€ > 0) we can find an A(0 < A < H) such that V,(x, t) < & when fzzu < h,
t > 0. It is then required to prove that for an arbitrary number A(0 <
A< h) and for t, = 0 there cannot be found a A(0 <A < A) such that
when ztxﬂ KA for all t >t, we would have H =(t, x4, tﬁ}!! < A

Let us assume, contrarily, that such a A deoes exist. Let us designate
Ye0 = Va(”O' ty). By virtue of the continuity of Vs with respect to x,
we can assume that A is so small that

k k
0> Hygl =2 1V, (m0, ) | <8
=1} 8=z}

According to 4, there can be found & T> 0 and ﬂzo‘ff<§3ksuch that
for all t € [¢,, to + T the solutions y(t, yy*, t,) of system (2.3) will
remain in G, and y,;(ty + T, y,°% #,) > e,

Moreover, by sssumption, for all ¢t >0 we shall have
&

k
SV, i), 1< R (or 3 17, (2 (6 @), ] <o)

=1 8=1

The functions Vs(x(t, xs‘, t) t) are continuously differentiable in
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the interval [to, t, + T+ At), and by virtue of 2 in this interval they
satisfy the inequalities

dv, (z (¢, %o*, to), 1)
dt

>f3 (V (I (tr Io‘, to) t)y ‘) (3=i,..., k)

when At > 0 is sufficiently small. Hence, by virtue of 3 Wazewski’'s
theorem is also applicable, according to which there exists the lower in-
tegral y (t, Yo*s t) and

V(5% ), ) >y, (G w? ) for t€ [t te+ Tl (s=1,...,k)

and, in particular, V,(z(t, z,% t)), ) > yl—(t, Yol to)-

But then V (z(ty + T; x5% ty), to + D 2y (tg + T, yo% ty) > &,
which, according to the choice of &, signifies that z( ¢ + T, xo‘, to)l
> h > A in contradiction to the assumption we made. The contradiction
proves the theorem.

Corollary (k = 1). Let there exist a function ¥(x, t), admitting of an
infinitesimal upper bound (or, being bounded), which can take positive
values for arbitrarily small ||x” and for any t > 0, and whose derivative
relative to system (1.1) is V> f(V, t) where f(V, t) >0 when t >0 and
0 < V< suplV when (x, t) = '] (or,for any 0 < V < ®) and such that for
an arbitrary positive number ! there is found a continuous function

o0
m (t) > 0, 8m(t)dt=oo
0
such that

fV,0) > m(l) when:>0, Il <<V <sup [V when(z,!) =T]
(respectively, for any I < ¥ < ®). Then the perturbed motion x = 0 of
system (1.1) 1is unstable:

This proposition is a modification of Chetaev’s instability theorenm
[2] and contains both the classical theorems of Liapunov [1]

f=m@yo ), o (V)>0 whenV >0
and certain of their generalizations [9,11],

3. Let there be given a real function V(x, t) continuous in [, having
in I continuous partial derivatives up to the kth order with respect to
Xy, «++, %, t. Let the functions X, ..., X, have continuous derivatives
up to the (k — 1)st order in . Let us denote the derivative V relative
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to system (1.1) of the function V by V{1}(x, )

-3 Exma

The second derivative of the function V relative to system (1.1) is
given by

V(I)

H

(2) vy aviy
VP (2, 1) = Z,IW—X(,) =
If the derivatives V(l), v .., v's) are thus defined, then the
derivative of the (s + 1)st order of the function V relative to system
(1.1) is given by

o v
pltn (z, 1) = 2 v az(‘??, 1) X; (z, 1) _*____._’f..f). (s+1<<kh)

i=1 i
From Theorem 1.1 ensues the following test for the stability of motion.

Let there exist a positive definite function V{x, t) whose kth order
derivative relative to system (1.1) satisfies the condition V% <
fv, O v D gy yhere the function f is non- decreasing with
respect to V, V{1, ., V(k 2)  and let the null solution of the equa-
tion

'y dy &y

T f(y, o :---y‘EF:fvt)
be stable (or, asymptotically stable) with respect to y when y, >0.
Then the unperturbed motion x = 0 of system (1.1) is stable (or, asymp-
totically stable).

In fact, the functions V; = V. ¥, = V(1) v, = vF 1 sapisry
the conditions of Theorem 1.1 for I = 1, since f = V' (s =1, ...,
k — 1) does not decrease with respect to ¥, V{1, .., V(k_l’, and
afy = f does not decrease with respect to V, V(ly, y(k=2)

From Theorem 2.1 a test for instability is obtained in an analogous
manner.

Let there exist a function V(x, t), admitting of ar infinitesimal
upper bound (or, being bounded), whose kth order derivative relative to

system (1.1) P‘k);>‘f(v v ot -1), t), where the function f is
non-decreasing with respect to V v, V(k"z), and let the null
solution of the equation

dlfy dk—ly

dy .
-;F=f(y’7["‘.';t—/:—f't>
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be +y-unstable in the region |y| + Idy/dt] + ...+ ldk_ly/dtk-IIQR,
t 220, or in the half-space E(t =>0) of the (k + 1)-dimensional space
{y, dy/dt, ..., dk“ly/dtk-l, t}. Then the unperturbed motion x = 0 of
system (1.1) is unstable.

Let us consider in detail the case of & = 2 and, which is of most
interest in applications of a linear functionm, f.

Theorem 3.1. If there exists a positive definite function V(x, t)
whose second derivative relative to system (1.1) V(z)ﬁgp(t)V(l), where
the continuous function p(t) satisfies the condition

oo H

g exp S p () drdt < oo 3.1)

A fo
then the unperturbed motion x = 0 of system (1.1) is stable.

Proof. Under the conditions of the theorem the function f = p(t)V(l)
is non-decreasing with respect to V since, clearly, it does not contain
V. The null solution of the equation

d% dy
9 e p )%
- POg

is stable with respect to y; this follows from the form of the gemeral
solution of this equation

3 L3
y () =yo + (%)0 S exp S p(vidvdr
Tty t,

and from the boundary condition occurring in its integral. Therefore, the
conditions of the stability test, which were formulated at the beginning

of this paragraph and on the basis of which we decided upon the stability
of the motion, are satisfied.

Condition (3.1) is satisfied, for example, by the functions
p = const < 0, p':-—«-‘:— {a = const > 1)

Theorem 3.2. If there exists a bounded function V(x, t) whose second
derivative relative to system (1.1) satisfies the condition V() >av +
26V(1) | where a and b are constants, a >>0 and, moreover, b >0 when
a =0, and if the function [ (b% + a) - b]¥(x, t) + V{1 (x, t) can take
positive values for arbitrarily small f!x!land any ¢ > 0, then the un-
perturbed motion of system (1.1) is unstable.

Proof. Under the conditions of the theorem the function f = aV + 2b¥(V
is non-decreasing with respect to V since a >>0. The null solution of
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the equation
d¥y dy
ap =Wty

is +y-unstable in the half-space E(t > 0) of the three-dimensional space

(y, dy/dt, t}. In fact, the general solution of this equation in the case
>0 is

'3

T —
- (Vb -+ a b} yo 4 (dy / dit)o e (Vo a4-b)(t=ty) +
2V ¥+ a
/B g — _
+ (Vbr4a+ bLUL_ (dy/dt)s e(b—V’b’—i—a)(!«»l.)
2V b2 +a

According to the conditions of the theorem there is found an arbi-
trarily small leo” such that

(VB Fa—b)V (zo, to) + V¥ (g, to) = (V b+ a — b) yo -+ (dy [ dt)p >0

and, consequently, y - ® as t + ©, However, if a« = 0, then the general
solution has the form

dy/di d
v=vot TR @N_1) 650, y=y+(F) t—0 @=0

and here also y ~ ® as t — ©,

(dy | dt)o= VWV (o, to) >0

Since the conditions of the instability test formulated above are ful-
filled, the theorem is proved.

The second derivative of function V relative to the equations of per-
turbed motion, was used by Ibrashev who proposed a theorem on the in-
stability of motion [7}. We can prove the following extension of
Ibrashev’ s theorem.

Theorem 3.3. If there exists a bounded function V(x, t) such that for
arbitrarily small ||| and any t >0 the functions ¥(x, t) and vil(x,1t)
simultaneously may take positive values, and Vi2ix, t) >0 (V2 =)
in the set E(V > 0, V(1) > 0), then the unperturbed motion x = 0 of
system (1.1) is unstable.

Let us choose, in an arbitrarily small neighborhood of the unper-
turbed motion, a point (x;, ty) € " at which

V (2o, 1) >0, VO (20, to) > 0
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The perturbed motion z(t, x5, t;) will remain in the set E(v>o,
y( > 0) until it leaves I since otherwise for some T > t, we would have
V(x(T, %, ty), DV (x(T, x5, t4), T = 0 when V(x(t, x5, ty), V'V
(x(t, %5, t5), t) > 0 for t € [ty, D.
But this is impossible since for t EE[to, b
V(2 (¢, %0, to), )V (2 (2, 7o, to), 1) ==
t t

= [V (o, to) + S VO gr] (VA (2o, to) + S V@ dt] >V (2o, to) VIV (o, to)
[ ty

Consequently (by virtue of the continuity of V(x(t, Xy, t), t)V(l)
(z(t, Zg, to), t) with respect to t)

V(@ (T, %o, t), T) VOV (2 (T, 20, to), T) >V (20, to) V' (20, 20) >0

But in the set E(V > 0, v{!) > )
t
VO (2 (2, 70, to), 1) = VO (25, to) + S VO dt > VD (2, 1)

t
t

V@M%J%0=VWM&+SVmﬂ>VMJ0+Vm@mMU—M
t,

The incompatibility of the latter inequality with the condition of
boundedness of V(x, t) indicates the instability of the motion.
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